6,294 research outputs found

    Flux-corrected transport techniques for transient calculations of strongly shocked flows

    Get PDF
    New flux-corrected transport algorithms are described for solving generalized continuity equations. These techniques were developed by requiring that the finite difference formulas used ensure positivity for an initially positive convected quantity. Thus FCT is particularly valuable for fluid-like problems with strong gradients or shocks. Repeated application of the same subroutine to mass, momentum, and energy conservation equations gives a simple solution of the coupled time-dependent equations of ideal compressible fluid dynamics without introducing an artificial viscosity. FCT algorithms span Eulerian, sliding-rezone, and Lagrangian finite difference grids in several coordinate systems. The latest FCT techniques are fully vectorized for parallel/pipeline processing

    Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates

    Full text link
    This work describes the statistics for the occupation numbers of quantum levels in a large isolated quantum system, where all possible superpositions of eigenstates are allowed, provided all these superpositions have the same fixed energy. Such a condition is not equivalent to the conventional micro-canonical condition, because the latter limits the participating eigenstates to a very narrow energy window. The statistics is obtained analytically for both the entire system and its small subsystem. In a significant departure from the Boltzmann-Gibbs statistics, the average occupation numbers of quantum states exhibit in the present case weak algebraic dependence on energy. In the macroscopic limit, this dependence is routinely accompanied by the condensation into the lowest energy quantum state. This work contains initial numerical tests of the above statistics for finite systems, and also reports the following numerical finding: When the basis states of large but finite random matrix Hamiltonians are expanded in terms of eigenstates, the participation of eigenstates in such an expansion obeys the newly obtained statistics. The above statistics might be observable in small quantum systems, but for the macroscopic systems, it rather reenforces doubts about self-sufficiency of non-relativistic quantum mechanics for justifying the Boltzmann-Gibbs equilibrium.Comment: 20 pages, 3 figure

    Modulated Amplitude Waves in Collisionally Inhomogeneous Bose-Einstein Condensates

    Get PDF
    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length aa subjected to a spatially periodic modulation, a=a(x)=a(x+L)a=a(x)=a(x+L). This "collisionally inhomogeneous" BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of xx. We transform this equation into a GP equation with constant coefficient aa and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that "on-site" solutions, whose maxima correspond to maxima of a(x)a(x), are significantly more stable than their "off-site" counterparts.Comment: 25 pages, 10 figures (many with several parts), to appear in Physica D; higher resolution versions of some figures are available at http://www.its.caltech.edu/~mason/paper

    Static and rotating domain-wall crosses in Bose-Einstein condensates

    Get PDF
    For a Bose-Einstein condensate (BEC) in a two-dimensional (2D) trap, we introduce cross patterns, which are generated by intersection of two domain walls (DWs) separating immiscible species, with opposite signs of the wave functions in each pair of sectors filled by the same species. The cross pattern remains stable up to the zero value of the immiscibility parameter ∣Δ∣|\Delta |, while simpler rectilinear (quasi-1D) DWs exist only for values of ∣Δ∣|\Delta | essentially exceeding those in BEC mixtures (two spin states of the same isotope) currently available to the experiment. Both symmetric and asymmetric cross configurations are investigated, with equal or different numbers N1,2N_{1,2} of atoms in the two species. In rotating traps, ``propellers'' (stable revolving crosses) are found too. A full stability region for of the crosses and propellers in the system's parameter space is identified, unstable crosses evolving into arrays of vortex-antivortex pairs. Stable rotating rectilinear DWs are found too, at larger vlues of ∣Δ∣|\Delta |. All the patterns produced by the intersection of three or more DWs are unstable, rearranging themselves into ones with two DWs. Optical propellers are also predicted in a twisted nonlinear photonic-crystal fiber carrying two different wavelengths or circular polarizations, which can be used for applications to switching and routing.Comment: 9 pages, 10 figures, Phys. Rev. A (in press

    Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations

    Get PDF
    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction

    On the Supersolid State of Matter

    Get PDF
    We prove that the necessary condition for a solid to be also a superfluid is to have zero-point vacancies, or interstitial atoms, or both, as an integral part of the ground state. As a consequence, superfluidity is not possible in commensurate solids which break continuous translation symmetry. We discuss recent experiment by Kim and Chan [Nature, {\bf 427}, 225 (2004)] in the context of this theorem, question its bulk supersolid interpretation, and offer an alternative explanation in terms of superfluid helium interfaces.Comment: 4 figures, 4 page

    Superfluidity within Exact Renormalisation Group approach

    Full text link
    The application of the exact renormalisation group to a many-fermion system with a short-range attractive force is studied. We assume a simple ansatz for the effective action with effective bosons, describing pairing effects and derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator was shown to lead to similar results.Comment: 17 pages, 3 figures, to appear in the proceedings of Renormalization Group 2005 (RG 2005), Helsinki, Finland, 30 Aug - 3 Sep 200

    Families of Matter-Waves for Two-Component Bose-Einstein Condensates

    Full text link
    We produce several families of solutions for two-component nonlinear Schr\"{o}dinger/Gross-Pitaevskii equations. These include domain walls and the first example of an antidark or gray soliton in the one component, bound to a bright or dark soliton in the other. Most of these solutions are linearly stable in their entire domain of existence. Some of them are relevant to nonlinear optics, and all to Bose-Einstein condensates (BECs). In the latter context, we demonstrate robustness of the structures in the presence of parabolic and periodic potentials (corresponding, respectively, to the magnetic trap and optical lattices in BECs).Comment: 6 pages, 4 figures, EPJD in pres
    • …
    corecore